3.1066 \(\int \frac{\sqrt{x}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=331 \[ -\frac{\sqrt [4]{2} \sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{2} \sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{2} \sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{2} \sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{\sqrt{b^2-4 a c}-b}} \]

[Out]

-((2^(1/4)*c^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b -
Sqrt[b^2 - 4*a*c])^(1/4))) + (2^(1/4)*c^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]
)/(Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (2^(1/4)*c^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b
- Sqrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - (2^(1/4)*c^(1/4)*ArcTanh[(2^
(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.366469, antiderivative size = 331, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1115, 1375, 298, 205, 208} \[ -\frac{\sqrt [4]{2} \sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{2} \sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{2} \sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{2} \sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{\sqrt{b^2-4 a c}-b}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]/(a + b*x^2 + c*x^4),x]

[Out]

-((2^(1/4)*c^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b -
Sqrt[b^2 - 4*a*c])^(1/4))) + (2^(1/4)*c^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]
)/(Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (2^(1/4)*c^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b
- Sqrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - (2^(1/4)*c^(1/4)*ArcTanh[(2^
(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

Rule 1115

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(2*k))/d^2 + (c*x^(4*k))/d^4)^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1375

Int[((d_.)*(x_))^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]
}, Dist[c/q, Int[(d*x)^m/(b/2 - q/2 + c*x^n), x], x] - Dist[c/q, Int[(d*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; F
reeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{x}}{a+b x^2+c x^4} \, dx &=2 \operatorname{Subst}\left (\int \frac{x^2}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )\\ &=\frac{(2 c) \operatorname{Subst}\left (\int \frac{x^2}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}-\frac{(2 c) \operatorname{Subst}\left (\int \frac{x^2}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}\\ &=\frac{\left (\sqrt{2} \sqrt{c}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}-\frac{\left (\sqrt{2} \sqrt{c}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}-\frac{\left (\sqrt{2} \sqrt{c}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}+\frac{\left (\sqrt{2} \sqrt{c}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}\\ &=-\frac{\sqrt [4]{2} \sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{-b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [4]{2} \sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{-b+\sqrt{b^2-4 a c}}}+\frac{\sqrt [4]{2} \sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{-b-\sqrt{b^2-4 a c}}}-\frac{\sqrt [4]{2} \sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt [4]{-b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [C]  time = 0.0275613, size = 47, normalized size = 0.14 \[ \frac{1}{2} \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\log \left (\sqrt{x}-\text{$\#$1}\right )}{2 \text{$\#$1}^5 c+\text{$\#$1} b}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]/(a + b*x^2 + c*x^4),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , Log[Sqrt[x] - #1]/(b*#1 + 2*c*#1^5) & ]/2

________________________________________________________________________________________

Maple [C]  time = 0.257, size = 45, normalized size = 0.1 \begin{align*}{\frac{1}{2}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{{{\it \_R}}^{2}}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(c*x^4+b*x^2+a),x)

[Out]

1/2*sum(_R^2/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(x)/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.08835, size = 5956, normalized size = 17.99 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-2*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 -
 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*arctan(((a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)*sqrt(c^2*x - 1/2
*sqrt(1/2)*(b^3*c - 4*a*b*c^2 - (a*b^6*c - 12*a^2*b^4*c^2 + 48*a^3*b^2*c^3 - 64*a^4*c^4)/sqrt(a^2*b^6 - 12*a^3
*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4
*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b
^2*c^2 - 64*a^5*c^3) - (a*b^4*c - 8*a^2*b^2*c^2 + 16*a^3*c^3)*sqrt(x)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2
*c^2 - 64*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c +
 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))/c) + 2*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 -
8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 1
6*a^3*c^2)))*arctan(((a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)*sqrt(c^2*x - 1/2*sqrt(1/2)*(b^3*c - 4*a*b*c^2 + (a*b^6
*c - 12*a^2*b^4*c^2 + 48*a^3*b^2*c^3 - 64*a^4*c^4)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))
*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*
b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 -
12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))/sqrt(a^2*b^6 - 12*a^3*b^4*c
+ 48*a^4*b^2*c^2 - 64*a^5*c^3) - (a*b^4*c - 8*a^2*b^2*c^2 + 16*a^3*c^3)*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b - (a*b
^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*
c + 16*a^3*c^2)))/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/c) - 1/2*sqrt(sqrt(1/2)*sqrt(-(b
 + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a
^2*b^2*c + 16*a^3*c^2)))*log(1/2*sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 - (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*
c^2 - 64*a^4*b*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b + (a*b
^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*
c + 16*a^3*c^2)))*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 -
 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)) + c*sqrt(x)) + 1/2*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*
b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*
c^2)))*log(-1/2*sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 - (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^
3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c
+ 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))
*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*
b^4 - 8*a^2*b^2*c + 16*a^3*c^2)) + c*sqrt(x)) - 1/2*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^
2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*log(1/2*sq
rt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 + (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)/sqrt(a^2*b^6 -
12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt
(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*sqrt(-(b - (a*b^4
 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c
+ 16*a^3*c^2)) + c*sqrt(x)) + 1/2*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 -
12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*log(-1/2*sqrt(1/2)*(b^4 - 8*
a*b^2*c + 16*a^2*c^2 + (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48
*a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3
*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c +
16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)) +
c*sqrt(x))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

integrate(sqrt(x)/(c*x^4 + b*x^2 + a), x)